Twitter APIの仕様変更のため、「いいね」の新規取得を終了いたしました

7931

@wed7931

  • いいね数 45,477/48,405
  • フォロー 253 フォロワー 1,023 ツイート 68,505
  • 現在地 チーバくんのみぞおち付近
  • Web http://wed7931.hatenablog.com/
  • 自己紹介 大学院数学専攻→インフラ系システムエンジニア→ちょっとお休み→新しい職場で心機一転。いろんな #数学 を勉強中。専門はリー群の表現論。妻と息子2人で日ハム応援中 #lovefighters 。 #水曜どうでしょう と #ゴリパラ見聞録 が好き。北海道出身/千葉県在住/松坂世代。
Favolog ホーム » @wed7931 » 2019年05月03日
並び順 : 新→古 | 古→新

2019年05月03日(金)

グリコのアレ @miyaji778

19年5月3日

Todoistのヘビーユーザーです。ブラウザでもアプリでも即同期で使いやすいです。

他のツールも気になるなぁ。 twitter.com/jmatsuzaki/sta...

タグ:

posted at 22:50:24

梅崎直也 @unaoya

19年5月3日

noteを始めてみました。方程式の解の公式|梅崎直也 @unaoya|note(ノート) note.mu/unaoya/n/n0bb8...

タグ:

posted at 17:38:50

非公開

タグ:

posted at xx:xx:xx

adhara_mathphys @adhara_mathphys

19年5月3日

Leibniz代数はリー代数の定義から反交換性を除いたものですが。
Cartan代数というとLie代数のCartan部分代数とか。
Taylor代数は聞いたことないです。何でしょう?

タグ:

posted at 13:23:27

adhara_mathphys @adhara_mathphys

19年5月3日

直和の場合は簡約リー代数と言いますが、半直和の場合はso(n)の元とR^nの元が書かんとは限りません。ユークリッド代数では回転生成子がso(n)の元で並進生成子がR^nの元です。回転と並進は非可換なので半直和と言っています。

タグ:

posted at 12:56:24

さのたけと @taketo1024

19年5月3日

H の中心化群は「H が可換なら」H を中心に含む最大の部分群という意味で「中心化」なのか🙂 (非可換の場合はそもそも中心化群が H を含まないので「中心化」は意味をなさないという認識でオッケー?🙄)

タグ:

posted at 12:43:43

池田 岳 @gakuikeda1109

19年5月3日

@SA_HyperGeo D加群は「解」を考える前の「微分方程式そのもの」の構造を捉えていると考えられます.それは,正確を期するならば「D加群としての同型類」としか言いようがないものではないでしょうか.代数方程式系との類似では,対応するイデアルによる剰余環が同型であることと対応しています.

タグ:

posted at 12:25:59

まついしょうた @1027stesc

19年5月3日

知識・理解なしに能力が伸びるのか?
そして知識・理解という後天的なものと、資質という先天的なものを対立させる必要性とは?どっちも伸ばす、でええやん。
こういう言葉遊びというか、美しい(とされる)ワード使うの好きだよなー。そして無思考・無批判に賛同してばかり。

タグ:

posted at 12:16:19

adhara_mathphys @adhara_mathphys

19年5月3日

Grassmann.lj
V"+++" constructs a positive definite 3-dimensional VectorSpace
とあります。Vector Spaceとありますが実際は内積空間が構成されるようです。 pic.twitter.com/3JiHSdtLXi

タグ:

posted at 11:15:02

八重樫 類 @rui_yaegashi_02

19年5月3日

因数分解って中高数学の闇だと思う。この問題も定義からいえば2でくくるだけでいいし。
有理数の範囲で〜とか、方程式を使う方法とか、因数定理とか後出しで習うから生徒はさらに混乱する。
とりあえず「因数分解せよ。」という問題文がよろしくない。 twitter.com/yamak0523/stat...

タグ:

posted at 11:10:49

書泉_MATH @rikoushonotana

19年5月3日

好評発売中『微分形式とその応用 曲線・曲面から解析力学まで』栗田稔/著 2600+税(現代数学社)
テンソル積と外積
接空間と双対接空間
微分形式の計算
動座標系の方法
リーマン空間
変分問題
解析力学と微分形式
フロベニウスの定理
等質空間
ストークスの定理とその応用 pic.twitter.com/aJaIfOyQIS

タグ:

posted at 11:02:46

まついしょうた @1027stesc

19年5月3日

このツイートを具現化してくれたような本で驚き…。「ファクト(事実)→抽象化→転用」と記されており、まんまやんかと。人間の持つ特別な力、抽象化。これこそが学力の要であり、国・算・理・社・英、教科指導を経てこそ鍛えられると信じている。教員の力量次第だが。
twitter.com/1027stesc/stat... pic.twitter.com/2H4fZw4x8N

タグ:

posted at 09:03:43

結城浩 / Hiroshi Yuki @hyuki

19年5月3日

それでは、今日のお仕事を始めましょう。今日も『数学ガールの秘密ノート/ビットとバイナリー』第5章を固めていきます。今日中に何とか後半部分を着地させたいところ。がんばりましょう。
bit.ly/hyuki-note11

タグ:

posted at 09:02:07

tana @ka_tana

19年5月3日

勉強しようと思ったときに「これは、自分には難しいかな?」と思ったら、試しにやってみるのは良い方法だと思う。やってみれば、本当に難しいかどうか分かるからね。難しければ、分かるところまで戻ってみればいい。やってみたら、思ったほど難しくなかったということもあるだろうし。

タグ:

posted at 06:59:36

adhara_mathphys @adhara_mathphys

19年5月3日

力を得る方法は
・数学書を読む
・数学者に聞く
・数学者に伝える
等が必要でそのためには数学の言葉と作法を知らないとうまくいかないです。

タグ:

posted at 05:02:23

もなくゎ @Monallowtail

19年5月3日

初動画投稿です!これから定期的に投稿していければと思います
微分幾何:トーラスのGauss曲率を計算しよう【はじめまして】 youtu.be/-bm_97lRkvg @YouTubeより

タグ:

posted at 04:48:23

非公開

タグ:

posted at xx:xx:xx

七誌 @7shi

19年5月3日

今日のILK方程式研究会(ないし数理物理学研究会)で発表した資料を公開しました。
1drv.ms/p/s!AC5Ti8744U...

タグ:

posted at 00:05:56

@wed7931ホーム
スポンサーリンク
▲ページの先頭に戻る

タグの編集

lovefighters 数学 日曜数学会 ゴリパラ nhk_news おかえりモネ ゴリパラ見聞録 MathPower はてなブログ 舞いあがれ

※タグはスペースで区切ってください

送信中

送信に失敗しました

タグを編集しました