7931
- いいね数 45,477/48,405
- フォロー 253 フォロワー 1,023 ツイート 68,505
- 現在地 チーバくんのみぞおち付近
- Web http://wed7931.hatenablog.com/
- 自己紹介 大学院数学専攻→インフラ系システムエンジニア→ちょっとお休み→新しい職場で心機一転。いろんな #数学 を勉強中。専門はリー群の表現論。妻と息子2人で日ハム応援中 #lovefighters 。 #水曜どうでしょう と #ゴリパラ見聞録 が好き。北海道出身/千葉県在住/松坂世代。
2018年11月13日(火)
ををを!
読解力向上へ詳細調査 小中高計46校 成果全県に拡大 | 県内ニュース | 福島民報 www.minpo.jp/news/detail/20... @FKSminpoより
タグ:
posted at 22:32:04
小樽JCT―余市IC、報道陣に公開 道横断自動車道 12月8日開通:どうしん電子版(北海道新聞) www.hokkaido-np.co.jp/article/247786
タグ:
posted at 20:17:25
このたび寛解しました。
画像は去年の12月のうつレコ記録と、今年10月の比較です。
月の半分が体調不良だったのに対し、寛解間近には5日程度まで減っています。
可視化する事で自分の体調を管理することができました。
アプリ「うつレコ」おススメです。
#休職中のまいちゃん #うつレコ #記録 #比較 pic.twitter.com/OACuZPxiRL
posted at 19:27:04
tsujimotter 日曜数学者 @tsujimotter
あぁ、そうか。そう考えるとアルキメデスの円周率計算法について誤解していたかもしれない。「内接する多角形の角を増やしていった極限が円に一致する」のではなく、あくまで「内接する多角形の周の長さの極限が円周の長さに一致する」ということだったのか。わー。
タグ:
posted at 19:17:19
正則関数 e^z は z が実数のとき実指数関数に一致するものである.このとき e^(a+ib)=e^a (cos(b)+i sin(b)) が成り立つ.
(証明) f(a+ib) = e^a(cos(b)+i sin(b)) は f(a)=e^a (a∈R) となる正則関数なので,一致の定理より証明終.
一致の定理は強すぎて何も証明していないようにすら見える.
タグ:
posted at 18:51:58
円周率の近似を多角形で得る議論。内接多角形による下からの評価は単にユークリッド空間の測地線が直線だからという理由で終わる。外接する多角形で円周の長さを上から評価する議論が難しいと思う。
タグ:
posted at 17:49:51
tsujimotter 日曜数学者 @tsujimotter
「ギザギザの経路」の極限をとっても円弧には一致しないけど、「内接する多角形」の極限をとると円弧に一致するというのは、だんだんよく分からなくなってくる。
タグ:
posted at 11:17:10
2018年11月12日(月)
宣伝 数学セミナー(日本評論社)12月号
p.81『表紙の裏側「さては線織玉すだれ」』
の写真は,この動画のワンシーンです.
#数学セミナー #日本評論社 pic.twitter.com/CAUC6Izn3K
posted at 22:57:09
産業医面談やった。
なんか事務的な面談で
調子が悪い訳ではない旨を話すと
問題無しに◯しておきますね。
だって。
30分の予定だったが
20分弱で終了。
まあ、こんなもんなのかな。。
モヤモヤ。
タグ:
posted at 22:25:18
今日の収穫。
藤田さんの連載「やわらかいイデアのはなし」は毎回楽しみに読んでいる。今回は「これから少しだけペースを上げて」と書いてあるが、確かにペースが上がって、難しくて置いてきぼりになりつつある。何回位相を勉強しても躓くところはだいたい同じで、一粒で何度でもおいしい。 pic.twitter.com/8YNK2RRdtJ
タグ:
posted at 21:02:05
非公開
タグ:
posted at xx:xx:xx
千葉大学病院 認知行動療法センター @chibauniv_cbt
「第一印象が大事!」と思って、初対面の場で無理しすぎてしまうと、2回目以降、「相手の期待を裏切ってはいけない」という思いが強くなり、いつしか人に会うにが面倒に・・。最初からありのままの自分を晒した方が、時間が経つにつれ「意外といい人かも」と思ってもらえて、楽かもしれません。#印象
タグ: 印象
posted at 07:09:59
非公開
タグ:
posted at xx:xx:xx
2018年11月11日(日)
先日、社内で片対数グラフが話題に挙がったのでブログにしてみました。
高校生からわかる片対数グラフと両対数グラフを使うと直線になる理由 takun-physics.net/?p=4615
タグ:
posted at 10:55:12
成分と基底で反変と共変でと言った元ネタは『ジョルダン標準形・テンソル代数』です。共役という概念がピンと来ていないので、もう少し考えてみます。 pic.twitter.com/lDJq7wyqfu
タグ:
posted at 09:43:44
#texconf2018 のライトニングトーク「日本語の LaTeX で幸せになる,かもしれない方法」のスライドを公開します。 aminophen.github.io/slide/hytexcon...
ついでにソースコードも晒しておきます → github.com/aminophen/hyte... pic.twitter.com/8KZjfgCCVP
タグ: texconf2018
posted at 09:07:43