黒木玄 Gen Kuroki
- いいね数 389,756/311,170
- フォロー 995 フォロワー 14,556 ツイート 293,980
- 現在地 (^-^)/
- Web https://genkuroki.github.io/documents/
- 自己紹介 私については https://twilog.org/genkuroki と https://genkuroki.github.io と https://github.com/genkuroki と https://github.com/genkuroki/public を見て下さい。
2019年05月21日(火)
放射能デマの件は直接的に多くの人を不幸にしたので(家族破壊による自殺などの経路で殺しているケースも少なくないと思う)、放射能デマを広めた人物達は選挙で酷い目に会うことが妥当。
具体的には、山本太郎とおしどりマコの2人は国会議員であってはいけない人物であると私は考えています。
タグ:
posted at 23:56:36
もう一つ、ローレンツ方程式をgnuplotのset term dumbを使ってテキストベースで描いてみたり。 pic.twitter.com/lNrs06LrXI
タグ:
posted at 22:51:08
ということでローレンツ方程式の計算プログラムを書いたエレンさんとマーガレットさんに敬意を表して、Scratchでローレンツ方程式を計算。
scratch.mit.edu/projects/11698... pic.twitter.com/OJjMrLU2jE
タグ:
posted at 22:49:14
REPL内でのAuto-trackingは`using Revise`だけじゃなくてConfigurationにある`Revise.wait_steal_repl_backend()`も実行しないとできないっぽいので注意。
#julialang
タグ: julialang
posted at 22:12:29
お試しでシンプルなListsを実装するJuliaパッケージ書いてるんだけど、Reviseっていうファイルの変更をtrackingしてくれるパッケージのおかげでかなり快適に開発できる。
#julialang
timholy.github.io/Revise.jl/stab...
タグ: julialang
posted at 22:09:44
カワズ on the bird @kawazu_on_bird
実際研究において位相空間論はこれでほぼ事足りた。これに載ってない位相空間論の話は枝葉に過ぎないと思うから、各テーマを勉強するときに必要に応じて調べれば十分だと思う twitter.com/genkuroki/stat...
タグ:
posted at 21:26:22
FPU問題、今はFPUT(Fermi-Pasta-Ulam-Tsingou )問題というのか!女性プログラマーが付け加わった。 sci.tea-nifty.com/blog/2017/04/f...
タグ:
posted at 21:15:44
カオスを生じるローレンツ方程式、実は2人の女性プログラマーによって計算されたものだった。Ellen FetterさんとMargaret Hamiltonさん(アポロ計画でも有名)。LGP-30というコンピュータで計算。そういやFPU問題も(続く)。
The Hidden Heroines of Chaos www.quantamagazine.org/hidden-heroine... @QuantaMagazine
タグ:
posted at 21:14:10
非公開
タグ:
posted at xx:xx:xx
津田和俊/急激に進行した網膜剥離と闘って @kaztsuda
と、今朝の紙の新聞に載ってると聞いて読んでみたが、福島県では(中略)避難先で家を買った人、復興公営住宅や災害公営住宅で暮らす人を「生活が安定した」として「避難者」として数えない、とあるが、それは宮城県や岩手県も同じ。全都道府県に対し通知を送ったと書いてるではないの。ホントにバカ。
タグ:
posted at 18:33:55
“見城徹社長が(略)過去の作品の部数を「晒し」たということを知り、これまで感じたことのない恐怖感を感じました。出版社しか知りえない情報が、作家を攻撃し、恥をかかせるための武器として使われた” / “みんなウェルカム@幻冬舎plusをおやすみすることにしました|佐久間…” htn.to/2xEXpKBszw
タグ:
posted at 18:27:15
@megaflygongon ということで、算数教育に対しての不信を広げていくことが重要だと考えています。
「教育への不信感を広げるのはケシカラン」という人もいるかもしれませんが、信用に値しないものを信用する方が危険です。
タグ:
posted at 14:52:56
@megaflygongon マルを貰おうとすると、「算数・数学の問題は教えられた解法を使わないとならない。解法・公式を覚えるのが算数・数学の勉強」となってしまって、試行錯誤して理解を深めることが出来なくなり危険です。
タグ:
posted at 14:50:35
@megaflygongon 「今の学校での算数教育はおかしくなっているから信用すべきじゃない」という認識を広げることで、おかしな指導の悪影響を軽減できると考えています。
掛け算の順序でバツになっても「これ、採点がおかしいから気にしなくていいや」となれば、順序指導による悪影響から逃れられます。
タグ:
posted at 14:48:14
@megaflygongon これ、近い将来改善されるという見込みが全くありません。調べてみると、算数教育は掛け算の順序だけじゃなく様々な問題を抱えていることがわかってきました。
タグ:
posted at 14:45:14
加藤公一, 가토우 기미카즈(はむかず) @hamukazu
せいぜいぎりぎりまで許せて数理統計(例えば、分散の定義とその式変形とか)までなら数学にいれてもいいような気がするが、箱ひげ図とかそういうのは数学じゃなくね?
タグ:
posted at 14:39:26
ごまふあざらし(GomahuAzaras @MathSorcerer
わかる。小学校の社会の授業とかにして欲しい。 twitter.com/hamukazu/statu...
タグ:
posted at 14:37:09
加藤公一, 가토우 기미카즈(はむかず) @hamukazu
「データの分析」って、数学じゃないし、やるとしても数学と別の科目でやってほしいなという気はする。
タグ:
posted at 14:35:08
非公開
タグ:
posted at xx:xx:xx
非公開
タグ:
posted at xx:xx:xx
数学を学習する理由が「AIを学ぶため」っておかしいでしょ。行列復活させるのであればベクトルを数Cに送るのもやめてもらいたい。そもそもなぜ行列を削除した?って話です。
高校の数学に「行列」復活も、国が本腰入れるAI人材教育の詳細が判明 tech.nikkeibp.co.jp/atcl/nxt/colum...
タグ:
posted at 13:08:35
ごまふあざらし(GomahuAzaras @MathSorcerer
Slack と MathJax の組み合わせ=さいつよ疑惑
Slackデスクトップアプリで使いたい場合はコレ
github.com/fsavje/math-wi...
ただし、上記ツールを入れていない人から見るとただのドルマークと生のTeX記号の羅列になって閲覧されることに注意 pic.twitter.com/sEHPFFDlM9
タグ:
posted at 12:28:47
@megaflygongon www.asahi.com/edu/student/te... これとか典型ですね。間違ったことを上手に教えるというのは最悪です。
タグ:
posted at 11:56:43
@megaflygongon 昔の教師は、テキトーに適当にスルーしていたけど、最近の教師は真面目に指導書の記述に従っている、ということなのかどうか。
この教師もそうですが、掛け算順序強制をする教師で目立つのは、研究熱心で真面目な人ですね。それで教え上手。で、論理的に自分の頭で考えることが出来ない優秀な馬鹿。
タグ:
posted at 11:56:03
@megaflygongon 教科書会社が教師向けに発行している授業マニュアル=教科書指導書では、過去から現在まで、全ての教科書会社で掛け算の順序を逆にするのは間違いと書かれています。教科書本体には書かれていません。
タグ:
posted at 11:53:06
@megaflygongon ただ言えるのは、教師個人がおかしな考え方に陥っていると言うことではなく、算数教育の中枢を担う大学教育学部の先生や教科書会社がおかしな考え方に嵌まっているというのがあります。
このまとめのソースの多くも、そのような算数教育の権威筋からのものです。
togetter.com/li/901635
タグ:
posted at 11:50:45
@megaflygongon これについて、10年以上調べているのですが、実際に掛け算の順序強制指導がどの程度行われているのか、過去と比較して増えているのかどうか、正確なところはわからないのです。
私自身も教わった記憶はないし、なんとなく最近増えている気もしますが、昔から教えられていたという人もいます。
タグ:
posted at 11:48:29
非公開
タグ:
posted at xx:xx:xx
@taketo1024 @motcho_tw もっと簡単に出せました。xもyも無理数で、x/yが有理数でないなような点、例えば(√2,√3)ならこの条件を満たします。
twitter.com/sekibunnteisuu...
タグ:
posted at 09:15:25
x=√2 y=√3 とする。a√2+b√3=c を満たす有理数a,b,cはa=b=c=0のみ。
よって、(√2,√3)が何らかの異なる2つの格子点の垂直二等分線上にあるはずがない。
よって、(√2,√3)を中心とする円はこの条件を満たす。
twitter.com/motcho_tw/stat...
タグ:
posted at 09:13:17
測度が0より大きいのだから、空集合ではない。よってそのうちのどれかの点を中心にした円を考えたら条件を満たす。
具体的に中心の点を構成することは出来るのかな?
タグ:
posted at 08:12:22
円の面積をSとすると、どの帯にも引っかかっていない部分の面積はS-2a以上。
どの帯にも引っかかっていないなら直線にも引っかかっていない。
aは任意の正の実数だから、いくらでも小さく出来る。ここから、どの直線にも引っかかっていない点の測度がSであることがわかる。
タグ:
posted at 08:10:39
直線が直径1の円で切り取られる長さは高々1だから、円内でk番目の帯に引っかかる部分の面積は高々a*(1/2)^k
0~nまでのどれかの帯に引っかかる部分の面積は2aを超えない。
タグ:
posted at 08:05:22
平面全体どころか、有限な領域すら埋め尽くすことが出来ない。
例えば、直径1の円を考える。
2つの異なる格子点の垂直二等分線は加算だから、番号を付けることが出来る。直線を中心に、幅a*(1/2)^kの幅を持った帯状のものを考える。kは垂直二等分線に付けられた番号。
タグ:
posted at 07:52:01
直観的には成り立ちそう。異なる2つの格子点の垂直二等分線上の点はこの条件にあてはまらない。逆に、どんな異なる2つの格子点の垂直二等分線上にもない点であれば、この条件にあてはまる。
異なる2つの格子点は可算。よって垂直二等分線も可算。
加算な直線で平面を埋め尽くせないことを示せば良い twitter.com/motcho_tw/stat...
タグ:
posted at 07:41:15
@new_teacher_mom こんにちは〜 結局掛け算の順序問題について、どうして固定することが子どもの発達段階に応じた教育法になるのか説明してませんね〜 私、固定されてすごく迷惑でした。
タグ:
posted at 07:01:46
「かけ算のかける数とかけられる数の入れ替えについて素人から無知に叩かれ」
自分の無知を棚に上げてよく知りもしない専門外の話題に首を突っ込み、相手を素人・無知と決めつけるから批判されるんじゃないですかね。そもそも新卒でしょ。あなたが一体何を知ってると言うのか。 twitter.com/new_teacher_mo...
タグ:
posted at 06:56:23
杉村喜光:知泉(源氏物語の漫画、執筆中 @tisensugimura
今回の「正しい使い方」というエントリーはすでに5万人にRTされているのを見て、その100倍近くの目に触れていると思われるので、これが「正しい使い方」として認知されてしまう可能性があるのも怖いので、RTで拡散推奨です。
タグ:
posted at 06:53:59
杉村喜光:知泉(源氏物語の漫画、執筆中 @tisensugimura
焼肉にレモンを添えるようになったルーツとして叙々苑でタン塩にレモンだれを使ったのが最初だという説があって、その時は出来上がったレモンだれを提供していたこともあり、網に塗るという作法は当然なかった。その後、生レモンの方を提供し「お好みで」とやる店が増えて今のようになったとされている
タグ:
posted at 06:53:59
杉村喜光:知泉(源氏物語の漫画、執筆中 @tisensugimura
「焼肉は網にレモンを塗るのが正しい使い方」という話。
これは、魚を焼くときに網に酢を塗ると焦げない、の応用だけど、2010年頃から言われ始め、2012年5月12日放送の「雑学家族」で紹介されて有名になったもの。
「正しい使い方」との断言がマナー講師みたいな感じが凄く恐い。 twitter.com/gomachan_ks/st...
タグ:
posted at 06:53:58
現実としては、読まない(読めない)編集者=ダメな編集者というのが圧倒的経験則ですのでね。見城氏は読まずに当ててきた人ですが、ダメ編集でも有名人とコネづけにいそしんでいれば売れてしまう(こともある)というのも現実ですけれど。
twitter.com/deja_lu/status...
タグ:
posted at 02:31:33
有理数までしかやっていないところで実数を導入するコストとすでに実数について知っているものとして複素数を導入するコストを比較すると、比較にならないほど実数の導入の方が大変。
中等教育で実数については適切に誤魔化して教えるしかないと思う。
複素数と複素平面は易しい。
タグ:
posted at 01:57:20
x³+y³+z³-3xyz の因数分解にしても、x⁴+x²+1 の因数分解にしても、必要な複素数は1のべき根。複素平面上にプロットせずにすませる数学教育など考えられない。
タグ:
posted at 01:49:12
個人的には、x³+y³+z³-3xyz の因数分解について教える場合には、複素数を使えば、1次式の積まできれいに分解できることにも触れるべきだと思う。
x^4+x^2+1 の因数分解についても同様。
複素数を使わない中途半端な段階でやめるから難しくなる話の典型例。
タグ:
posted at 01:47:09
複素数を導入するときに複素平面も導入しないことは、実数を導入するときに実数直線に触れないことに匹敵しており、数学教育的には論外だと思います。
複素平面の導入コストはほぼゼロなのだから、複素数の導入時に必ず複素平面についても説明させるべき。
タグ:
posted at 01:42:30
複素平面を知っていることのメリットの一つは、e^{iθ}で回転が表現できること。高校ではその程度のことをやっておけば十分。
e^{inθ}は ∫_{-π}^π sin(mθ)sin(nθ)dθ などの計算の簡略化に役に立つ。
複素数と複素平面は、実数と実数直線が空気のごとく使われるのと同じような扱いでよいと思う。
タグ:
posted at 01:38:46
三角函数の加法定理を扱うときには複素数を使って公式を整理できることを教えた方が親切。
行列を教えるときに、
[ x -y ]
[ y x ]
型の行列と複素数を対応させられる。回転行列と e^{iθ} の対応を含む。そのとき、2次元平面と複素数の対応も活きる。
タグ:
posted at 01:38:45
複素平面は空気のようなものなので、複素数をできるだけ早く導入するのと同時に説明しておいて、その後は「あらゆる場所で利用する」というのでよいと思う。
複素平面自体の導入の手間はほぼゼロ。x,y∈ℝについて複素数x+iyと平面上の点(x,y)を対応付けるだけ。続く
タグ:
posted at 01:38:41
参院選の比例代表は非拘束名簿式と特定枠による拘束名簿式の併用なので複雑です。おしどりマコが特定枠なのかどうかわかりませんが、いずれにしても政党名で投票しようが他の候補者名で投票しようがおしどりマコの当選確率を上げるので、選択肢は「比例では立憲民主党にも候補者にも入れない」の一択
タグ:
posted at 00:26:37
@new_teacher_mom @sekibunnteisuu @golgo_sardine そしてモデルや理論の有効性は調査による検証を経なければならないはずです。例えば、松原(1959)は大規模調査によるモデル検証の成果でもあります。だから発達段階を論拠に何か言うためには、依拠するモデルを明らかにしかつそれが現実的であることが検証されていることを示す必要があると思います。
タグ:
posted at 00:17:34
@new_teacher_mom @sekibunnteisuu @golgo_sardine 続けて感想を書いておくと、発達段階という論点も気になります。私は学習段階なら理解できます。例えば足し算が十分にできない子供がかけ算に習熟するのは無理です。平仮名が書けない子供に漢字を教えるのも難しい。ところが発達になると、モデルや理論抜きには語れないと思います。
タグ:
posted at 00:13:13
1だった。Fortranリスペクトなのかな
gnuplotでの配列(array)の使用
www.ss.scphys.kyoto-u.ac.jp/person/yonezaw...
タグ:
posted at 00:09:14
@new_teacher_mom @sekibunnteisuu @golgo_sardine #超算数 こういう研究は、かけ算の順序固定強制指導の有効性に関してなされているんでしょうかね? なされているなら、現代でも順序にこだわる人々の常に参照するところであってもらいたいですし、なされていないのならビッグデータを集めて検証する責任が果たされていないように見えます。
タグ: 超算数
posted at 00:06:55
@new_teacher_mom @sekibunnteisuu @golgo_sardine #超算数 その次、1960年完全実施の指導要領では、かけ算の指導が2年生に戻ってきました。指導時期変更には心理学的エビデンスが活用されました。例えば、
松原達哉「レディネスに関する実験的研究: 乗法九九学習を中心に」『教育心理学研究』7巻3号 (1959年)、18-28,62ページ。doi.org/10.5926/jjep19...
タグ: 超算数
posted at 00:03:17