黒木玄 Gen Kuroki
- いいね数 389,756/311,170
- フォロー 995 フォロワー 14,556 ツイート 293,980
- 現在地 (^-^)/
- Web https://genkuroki.github.io/documents/
- 自己紹介 私については https://twilog.org/genkuroki と https://genkuroki.github.io と https://github.com/genkuroki と https://github.com/genkuroki/public を見て下さい。
2020年12月11日(金)
Make Your First Julia Pull Request: An excellent tutorial published by Katharine Hyatt @kslimes. This step-by-step guide provides all the information you need to become a contributor to open source Julia.
kshyatt.github.io/post/firstjuli...
#julialang #ML #AI #OpenSource pic.twitter.com/p9mAkwO85E
タグ: AI julialang ML OpenSource
posted at 23:57:42
@eco_tetsu 私が試してみた擬似乱数発生器では
en.wikipedia.org/wiki/Xoroshiro...
Xoroshiro128Plus
も良さそうでした。
sunoru.github.io/RandomNumbers....
タグ:
posted at 23:57:01
@eco_tetsu 3つ前のツイートの「dSFMTが擬似乱数生成器を使用するようになっています」を「dSFMTを擬似乱数生成器として使用するようになっています」に訂正します。
dSFMTについては
www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/...
の後半を見てください。
タグ:
posted at 23:53:26
@eco_tetsu twilog.org/genkuroki/sear...
私のツイログで gcc vs julia を検索
↑
ここから詳しい情報をたどれます。
私のプログラミング能力では、速度的にはgccをJuliaの変わりに使うメリットはないです。
タグ:
posted at 23:46:19
@eco_tetsu 数値計算においては、rand()でさえ適切なライブラリを自分で選べない人には「CやC++はやめてJuliaを使うべきだ」と自信を持って言えます。
タグ:
posted at 23:42:46
@eco_tetsu 既に書いたことの繰り返しになりますが、gccのデフォルトのrand()は質が低くて非常に遅い場合があります。
これもすでに書いたように、Juliaのデフォルトのrand()ではメルセンヌツイスター(MR19937)よりも質が高くて速度も3倍程度速いdSFMTが擬似乱数生成器を使用するようになっています。
タグ:
posted at 23:41:13
@GreatDemon1701 @yamazaksv2 @pyokotan15 「サクランボを使いましょう」という指示を小1の子にするのは害が大きすぎると私も思いました。サクランボを使いたくない子にサクランボを強制しちゃダメ。
私のうちでは子にとっての母と父の両方が「学校でバツをもらっても気にするな。変な採点ならうちでマルにする」という方針で徹底しました。
タグ:
posted at 23:25:58
Re: RTs
円周率にモンテカルロ計算について、gccでJuliaを速度的にやっつけようとしたときのことを思い出した。負けました。
gccのrand()がよくないことに気付いて、メルセンヌツイスターに変えてもダメで、メルセンヌツイスターは既に時代遅れで後継のdSFMTをJuliaが採用していることを知った。
タグ:
posted at 23:08:40
非公開
タグ:
posted at xx:xx:xx
#数楽 忘れないようにメモ
www.gakushuin.ac.jp/~881791/pdf/su...
三角格子上の臨界パーコレーションの共形不変性
カーディーとスミルノフ
田崎晴明
数理科学 NO.546,DECEMBER 2008
私のフォロワーが楽しめる可能性が高い解説記事。
タグ: 数楽
posted at 22:54:47
#Julia言語 の本場のMITでの数値解析の講義でもPyPlot.jlが普通に使われています。
添付画像は以下より
github.com/mitmath/18335
↓
Lecture 2 (Feb 5)
Julia floating-point notebook
nbviewer.jupyter.org/github/mitmath...
JuliaはMITの講義でも学ぶと効率的。
Juliaと相性の良い数学もマスターできます。 pic.twitter.com/SwmZpWwZ4Y
タグ: Julia言語
posted at 22:33:06
twitter.com/mkasahara/stat... MSVC同士(ないしGCC同士)でもn=5000と9900で(約2倍ではなく)15倍ぐらい時間違うので,nが大きいときはrand()以外の時間も大きいはずで,逆にnが小さいときはMSVCとGCCで2倍弱しか違わなかったので,rand()以外かと思ってしまいました…
タグ:
posted at 22:27:39
twitter.com/esumii/status/... しかしそれぞれ標準のrand()でも,n=5000のときは2倍未満の速度差なのにn=9900で4~6倍とかになるのはなんでだろう.どっちのrand()も% 10007してそんなに偏りがあるとも思えないし…
タグ:
posted at 22:21:36
#Julia言語
Juliaは他言語との連携を重視しているので、PythonのライブラリもJuliaのライブラリとみなすことは自然だと思います。
{Pythonのライブラリ} ⊂ {Juliaのライブラリ}
という関係。
Juliaを複数のツールの貼り合わせに使うと、Julia自身が速いお陰で変なことをしなくて済む。 twitter.com/ultimatile/sta...
タグ: Julia言語
posted at 22:18:28
twitter.com/mkasahara/stat... 確かに,1.25倍ぐらいに縮まりました! やっぱりrand()の差で,nが小さいときは隠れてただけなんですね…お騒がせしましたがありがとうございました.
タグ:
posted at 22:11:44
Tsuyoshi Miyakawa @tsuyomiyakawa
マウスの脳を研究していてすごいと思うことの一つは、認知地図みたいな外界のモデルをその小さい脳の中にきちんと作って使っていること。ヒトの脳で理解不能なレベルですごいことの一つは、かなり多数の他者のモデルを中に作って音声つき3Dでぐりぐり動かして、観察したり対話したりしてることですね。
タグ:
posted at 22:08:36
@esumii たとえばですが、linuxjm.osdn.jp/html/LDP_man-p... の 「POSIXに示されているRAND実装例」で rand() を置き換えて乱数アルゴリズムを統一したら差がだいぶ縮まるのではないかと思います。
タグ:
posted at 22:05:15
M1 対応 Developer Preview 版 Docker を早速試してみた。ARM用イメージが動くし,警告が出るけれどx86用イメージも Rosetta2 で起動できるっぽい! pic.twitter.com/qIrl8rPQkh
タグ:
posted at 22:02:48
@ceptree @Hyrodium #Julia言語 「n次元横ベクトルのつもりで1×n行列を作らない!」と覚えておけば大抵の場合に自然にうまく行くと思います。
具体的には
u = [1, 2] # 縦ベクトル
ut = u' # 双対空間の元としての横ベクトル
とはするが、
ut = [1 2] # 1×2行列
とはしないということです。
nbviewer.jupyter.org/gist/genkuroki... pic.twitter.com/B8PPh4YuB0
タグ: Julia言語
posted at 22:01:52
twitter.com/Mi_Sawa/status... これにしたら確かにWin64とWSL2の「どちらも」3~4倍ぐらい速くなりましたが,依然として両者の間は6倍ぐらいの差が…つまり% Bのせいでもないのか…
タグ:
posted at 21:55:14
データ同化は観測減らしてもちゃんとできた。資料まとめて、関係者に送ろう。julia はかなり使えると思う。後はjuliaでの並列化計算をなんとかしたい。#julialang
タグ: julialang
posted at 21:41:31
twitter.com/esumii/status/... nが(もちろん10000未満の範囲で)大きいと差も大きくなるので,これはi = (i + 1) % B;あたりのアセンブリを見ないといけない流れ?
タグ:
posted at 21:39:29
(情報系でない学部2年生の学生さんたちのためにVisual Studioで動画とったけどWSL2でやった学生さんがいて,あまりにも実行時間が違うので疑って(←酷)自分でやったら本当に数倍以上速かった次第(すみません
タグ:
posted at 21:30:13
twitter.com/esumii/status/... プログラムは公開してもいいか.いろいろ手抜き&「写経」用なので画像ですみません.これでなんでWin64とWSL2で4~6倍も差がつくんだろう…(nを小さくすれば差があまりなくなるのでrand()の違いではない) pic.twitter.com/RDO8eqoZIe
タグ:
posted at 21:21:51
.. and I joined JuliaDebug just now
#julialang
github.com/JuliaDebug
タグ: julialang
posted at 21:07:17
twitter.com/esumii/status/... Visual StudioのほうはDebugではなくReleaseで,最適化オプション/O2,/Oi,/GLもついてて,「デバッグなしで開始」してるんですが25秒とかで,まったく同じプログラムがgcc -O3だと4秒弱(!),gcc -O0でも6秒弱.なんでだろう…
タグ:
posted at 21:06:55
@physics303 #Julia言語 append!とpush!のヘルプを参照。
append!(a, v)だと、aの最後にvの中身が追加される。
push!(a, x)だと、aの最後にxが追加される。
lst = [] と書くとAnyの配列になってPython並に遅くなる場合があります。
lst = Matrix{Float64}[]
または
lst = similar([zeros(0,0)], 0)
ならOK
タグ: Julia言語
posted at 20:54:30
@uKi2wQXyG7rx3gL 私はメールで市の教育委員会に掛算順序は大事だという意見についてどう考えているかを質問したことがあるのですが、もろにチョー算数信者の典型的な回答が返って来ました。
私が住んでいる市の教育委員会にいる算数教育に詳しい人はそういう人だったわけ。おそらくそういう人達が再生産されている。
タグ:
posted at 20:09:07
@uKi2wQXyG7rx3gL 昔、オウム真理教という邪悪な新興宗教があったのですが、理系高学歴者達が入信して幹部になって人殺しの手助けをしまくりました。
悪質なカルトには誰でも騙される可能性があります。
チョー算数信者達は社会の中枢でチョー算数活動で職を得て活動しているのでさらに騙しやすい立場に立っています。
タグ:
posted at 20:04:27
@uKi2wQXyG7rx3gL あのくだらないセンター試験の数学の成績ごときで制限してもチョー算数問題は解決しないと思います。
チョー算数マスターになれば、地方で算数教育の権威ある人になれたり、大学の先生になれたり、算数の教科書執筆者になれたりする現状を放置したままで問題が解決するとはとても思えない。
タグ:
posted at 19:59:14
ごまふあざらし(GomahuAzaras @MathSorcerer
どうじでーーーー(わくが完売になったときの叫び)
#Julia言語
qiita.com/advent-calenda...
タグ: Julia言語
posted at 19:15:03
@uKi2wQXyG7rx3gL ツイッターにも教科書執筆者がいるし、おそらく教科書のマニュアル本(指導書)の執筆者もいると思う。
あとツイッターで観測されるおバカさん達がどこで何の影響を受けたかの情報は、ノーダメージな人達にダメージを通すために役に立つ可能性があります。積分定数さんはよくそういう質問をしています。
タグ:
posted at 18:39:40
三年B組一八先生(金八じゃないよ) @uKi2wQXyG7rx3gL
@genkuroki たしかに
超算数の学習指導要領の附属書?を書いている人間達は謎に包まれていますね。
タグ:
posted at 18:22:58
非公開
タグ:
posted at xx:xx:xx
@uKi2wQXyG7rx3gL 私が言いたいことは、自分ちの子のリアルな教育環境やさらにツイッターなどで観測される人達をどんなに批判しても、例えば算数の教科書およびそのマニュアル本を執筆してチョー算数を広めている人達はノーダメージだということです。
ツイッターで見えるバカ以外にも目を向ける必要があります。
タグ:
posted at 18:19:36
三年B組一八先生(金八じゃないよ) @uKi2wQXyG7rx3gL
@genkuroki たしかに、保護者がこれだけ叩いても超算数教員が撲滅されない以上、駆除する方法そのものを研究する必要がありますね。
Twitterでの超算数教員の共通項
・頭が悪い
・数学が出来る人間に恨みを抱いている
・子供が嫌いなサイコパス
タグ:
posted at 18:15:34
チョー算数で飯を食っている人達が、「教育」や「人事」によってチョー算数後継者達を再生産し続けることができる社会的な仕組みを潰さない限り、子供を害するチョー算数問題は永久に解決しません。
誰か、算数の教科書執筆者達を深く研究する人達が出て来て欲しいです。
タグ:
posted at 18:03:02
チョー算数問題が何十年も解決しない原因
我々保護者の最優先事項は自分ちの子が被害に合わないことです。そのためには自分ちの子の相手を直接する大人だけに注意を払えば十分。
しかし、チョー算数を維持したり、「人事」によって後継者を育てている人達は、自分ちの子に直接関係していません。
タグ:
posted at 18:00:35
チョー算数=算数について独自の非常識な「理論」を作って子供に教え込むこと
の歴史は長く、算数教育界で重要な社会的地位についている人の多くが、チョー算数の信奉者達です。例えば、算数の教科書の実質的な執筆者はチョー算数マスターでしょう。
タグ:
posted at 17:56:16
「答えはA×B, A÷B, B÷Aのどれかになる」「これ何算?」「かけるの?わるの?」「どっちをどっちでわるの?」のように考える方向に誘導する教え方は何十年も前からずっと行われています。
一般にチョー算数問題の歴史は長いです。
掛算順序問題には100年以上の歴史がある。
タグ:
posted at 17:54:08
「答えはA×B, A÷B, B÷Aのどれかになる」「これ何算?」「かけるの?わるの?」「どっちをどっちでわるの?」のように考えるようになったら、割合が絡む科学的な事柄のほとんどを正常に理解できなくなります。
算数教育のせいで科学から疎外されてしまう子が大量生産され続けている。
タグ:
posted at 17:52:35
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 勝手にみんなを保護者仲間扱いにしてしまいますが、保護者仲間の皆さんには言いたい。
自分ちの子が「これ何算?」「かけるの?わるの?」「どっちをどっちでわるの?」と言っているとき、その原因はその子自身にはありません!
そうなるような教え方を算数教育業界が推し進めていることが原因です!
タグ:
posted at 17:43:32
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 掛算順序問題において教育関係者達が「掛算の順序は割合について習うときに重要になる」などと言う場合があるのですが、おそらくそれは「答えはA×B、A÷B、B÷Aのどれかになるか?」という発想を子供にさせているせいです。どれになるかを掛算順序への理解経由で解決させようとしたいわけ。
怖すぎ😱
タグ:
posted at 17:38:29
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 割合について習う小5の子は相当に賢くなっており、多くの常識的な思考も身につけています。
その武器を磨き上げることを標準的な算数教育は許してくれず、「答えはA×B、A÷B、B÷Aのどれかになる」というような非常識で不合理な考え方をするように子供を誘導します。
これは本当に怖い。
タグ:
posted at 17:33:31
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher で、子供にとって有害な算数教師は「A×B, A÷B, B÷Aのどれであるか」を判別するために手段として「A, Bの数値の性格の違い」なるものを子供に教え込もうとする。
「常識的にかつ直観的にAと?の積がBになるから?はB/Aになる」というような考え方をさせてくれないのだ。
タグ:
posted at 17:26:44
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher ところが、標準的な算数の教え方では「A, Bが与えられたら、求める数値がA×B, A÷B, B÷Aのどれかになる」のように子供が考える方向に誘導してしまうのです。子供は
「これ何算?」
「かけるの?わるの?」
「どっちをどっちでもわるの?」
と言うようになる。嗚呼!😱😭😱😭😱😭
タグ:
posted at 17:24:17
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 小5の子の保護者の多くは、自分ちの子が割合の理解に苦しんでいることに頭を悩ませていると思う。
その主な原因は、割り算の式をかけ算的直観を経由せずにいきなり書かせようとする教え方にあります。
Aと?の積がBになるというような考え方ができれば、?を求めるのは易しい場合が多い。
タグ:
posted at 17:21:23
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher いきなり割り算の式を書かせるための準備が、「⬜︎×3=15」と「3×⬜︎=15」の区別なのです。数の性格の違いを教えようとしているのだ。
普通の常識人は私が何を言っているか理解できないと思います。算数教育の世界は常識が通用しません。
タグ:
posted at 17:17:52
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 小3の算数教科書が手もとにある人は、教科書内で「⬜︎×3=15」と「3×⬜︎=15」が区別して書かれていることを確認できるはず。
割り算を単にかけ算の逆の演算だと教えて直観的に易しいかけ算経由ですべてを理解することではなく、直観が効きにくい割り算の式をいきなり書かせる方向に進んで行きます。
タグ:
posted at 17:15:54
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher この発言が私以外のどれだけの保護者に読んでもらえているか分かりませんが、教科書通りの標準的な算数の教え方に自分ちの子が忠実に従ってしまうと大変なことになってしまう危険性があることは知っておいた方がよいと思います。
かけ算順序問題はそういう深刻な問題の氷山の一角に過ぎません。
タグ:
posted at 17:12:34
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher そういう地道な経験値の蓄積のをすっとばして、独自に作った非常識な算数もどきの「理論」を子供に教え込んで何とかしようとする行為をやめさせるにはどうすればよいかが大問題。
タグ:
posted at 17:07:42
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 既知のA,Bが取り扱いの易しい数ならば「Aと?の積がBになる」という関係に気付いた瞬間に?が何であるかを式を経由せずに答えてもらえる場合が多いです。
そういう経験をたくさん積むことが大事。?の値がノータイムで出て来ない場合にはまじめに計算しなければいけないという経験も積める。
タグ:
posted at 17:05:55
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 「乗数・被乗数の数の性格の違い」のような考え方を子供にさせて割り算について教える行為は、その子の一生を台無しにする可能性があるのでやめるべき。
A,Bが既知で、Aと?の積がBになるという関係がわかっているときに?をAとBから求めることが割り算の定義そのもので、常にそう考えてよい。
タグ:
posted at 17:01:44
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 組み合わせを求めようとしたら、自然とCの式になる。
(x+1)^nの展開でx^rの係数を求めようとしたら自然とCの式になる。
これが望ましい理解であり、これなら「Cが使えるのはこういう場合」などと意識することもない。
割り算も同様。
タグ:
posted at 16:57:58
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 割り算は単にかけ算の逆です。
「割り算の意味は~と~だ」(多くの場合~と~は等分除と包含除)と教えて割り算の式を小学生に書かせ続けると、小5での割合で「3つの公式を使う最低の方法」(実質「くもわ」)に落ち着いてしまい、その子の人生は科学と無縁のものになってしまう危険性が増します。
タグ:
posted at 16:57:40
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 「子供の側がすでにどういう直観を身につけているか」「子供の側が身につけるとよい直観は何か」「場合ごとの暗記ではない方法で健全な直観を身につけてもらうにはどうすればよいか」のように考えずに、算数に関する独自の「理論」を作って子供に教え込もうとすることは「チョー算数」の定義そのもの。
タグ:
posted at 16:52:15
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 順列をもとめるのにCを使ってもいいし、組み合わせを求めるのにCを使ってもいい。別に使わなくてもいい。しらみつぶしに書き出して数えてもいい。
Cは、組み合わせと求める場合と、二項定理で係数を求める場合があります
みたいな認識だと、理解できなくなる。
タグ:
posted at 16:51:55
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 高校数学でも同様で、「順列組み合わせが分からない、CなのかPなのか迷ってしまう」という生徒の多くは、
CやP自体に、組み合わせとか順列の意味があると思ってしまっている。
そうじゃなくて、何かを求めるときにCやPを使う、というだけのこと。
タグ:
posted at 16:49:19
@sekibunnteisuu @sunchanuiguru @metameta007 @shoyugi @garapago03 @ramenmanteacher 10円玉を
●●●●●
●●●●●
●●●●●
と並べて100円玉1個と50円玉1個に両替してもらうというような経験および類似の経験を多数していると、視覚的に上のような状況では「15」と直観的に把握できるようになることは十分にあり得ます。
そういう人が15-3と書くことは非常によく理解できる。
タグ:
posted at 16:48:46
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher メタメタさんの対応は、それまでも学校でのまずい教え方の影響を修正するものではなく、追認するものになってしまっている。
タグ:
posted at 16:46:52
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher a÷bの意味は、bに何かをかけるとaになる、その何かのこと、(あまりのある割り算はまた別だけど)とシンプルに理解していれば混乱もなかったでしょう。
それと、1つ分を求める割り算だのいくつ分を求める割り算だのとしたから混乱したのでしょう。
タグ:
posted at 16:32:47
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher twitter.com/metameta007/st...
これメタメタさんの対応がまずかったと言うよりは、それ以前の教え方がまずかったと言うべきかな。
そしてそれがスタンダードな教え方になっていることこそが、算数教育の闇。
で、メタメタさんはそれを批判しないで同調しているように見えるのです。
タグ:
posted at 16:30:14
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 考えることができるでしょう。
割り算を習っていなくても実質的に割り算を理解したことになります。
それが以前私が言った「潜在的理解」です。
メタメタさんはどういう訳か「潜在的」を「生得的」と思い込んで頓珍漢なこと言っていましたが。
タグ:
posted at 16:25:27
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 6個を2人で同じ数ずつ分けると1人何個?
6個を1人3個ずつ分けると何人分?
というのをいろいろやるなかで徐々に数値を大きくしたりしていきますね。
仮に掛け算は理解していて割り算を教わっていない状態だだとして、
35個を7人で同じ数ずつ分けると1人何個?
だと、7と何をかければ35になるか?
タグ:
posted at 16:24:14
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher twitter.com/metameta007/st...
あの時のメタメタさんの対応はまずかったと今でも思っていますよ。
私がそのあたりを教えるなら、掛け算とか割り算とか意識させることなく、指を折って数えてもいいし、おはじき使ってもいいから、
タグ:
posted at 16:22:02
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher twitter.com/metameta007/st...
この発言が気になるのですよね。
3+2を表すのは次のどれか?
ア ●●● ●●
イ ●●●● ●
ウ ●●●●●
正解は ア
メタメタさんはこのような問題は算数を理解させる上で妥当だと思いますか?
タグ:
posted at 16:18:34
@sunchanuiguru @metameta007 @genkuroki @shoyugi @garapago03 @ramenmanteacher 常識的にわかるかどうかは分からないけど
●●●●
●●●●
●●●●
これで、「九九は完璧じゃないけど、5の倍数ならすぐわかる」という子が、横を全部5だと考えて、15と出して、3を引く、というのを想定してました。
タグ:
posted at 16:14:36
@metameta007 @sekibunnteisuu @genkuroki @shoyugi @garapago03 @ramenmanteacher もともとの質問にもどると、こういうこと↓
●●●●○
●●●●○
−−−−−−−−−
●●●●○
であることは常識的にわかるわけですが、
突然、別の問題(りんご)が出てくるという具合で、メタメタ007氏は的はずれな返答を繰り返されているわけです。
タグ:
posted at 13:07:27
@metameta007 @sekibunnteisuu @genkuroki @shoyugi @garapago03 @ramenmanteacher メタメタ007氏は、マッタク質問に答えず、かといって議論を拒否するわけでもなく、マッタク的はずれな返答を繰り返すので、真面目に対応しようと思ったら、同じような質問を繰り返すしかないと思うのですが、、、
見ている側からすると、うんざりするのは自業自得としか思えないのですが。
タグ:
posted at 13:02:16
Juliaで約1kBのメモリ(配列)を割り当てるのにかかる時間は1回あたり約66nsぐらいなので、RAMのレイテンシーと同じくらいのコストか。 pic.twitter.com/G2opSkXnVv
タグ:
posted at 12:31:22
ベイズにおいてパラメータは定数という人もおり、ベイズ界隈で標準的な理解を得るの大変すぎる。deepblue-ts.co.jp/%E7%B5%B1%E8%A...
タグ:
posted at 07:09:59
Hideki Kawahara: WAS @hidekikawahara
測定装置としての魅力に負けてしまった.届いた.これで50kHzまでは測定結果が信頼できる.33728.4, 44437, 53340 Hzの線スペクトル状の成分は,LED照明のインバーターからか?あるいはスピーカー内部処理のディジタルクロックが漏れているのか?33728.4Hz付近の成分は複数だった.面白い. pic.twitter.com/svfCdo8fOZ
タグ:
posted at 01:59:52
#統計
モデル0: 平均0∈ℝ²と分散共分散行列が固定された2次元正規分布
モデル1: 平均μ∈ℝ²と分散共分散行列が可変の2次元正規分布
分散共分散行列に入る独立なパラメータ数は3個。パラメータ数の差を取ると5になる。自由度は5
モデル0でデータを生成しての最尤法で自由度5のχ²分布が出てくる↓ twitter.com/genkuroki/stat...
タグ: 統計
posted at 01:41:41
#統計 モデル0が帰無仮説に対応し、モデル1が対立仮説に対応。
Wilks' theoremが基本で、それさえ理解してしまえば、相当にスムーズに、仮説検定からAICやBICまで理解できると思う。
Wilks' theoremをコンピュータの計算で納得する方法を以下のリンク先スレッドに書いた。 twitter.com/genkuroki/stat...
タグ: 統計
posted at 01:31:19
#統計 頻出なのは、
モデル0: q(y) = p(y|θ₀) (θ₀は定数)
モデル1: p(y|θ) (パラメータθは可変)
もしくは、パラメータ空間Θ₀がパラメータ空間Θ₁の次元の下がった部分集合になっていて、
モデル0: p(y|θ), θ∈Θ₀
モデル1: p(y|θ), θ∈Θ₁
と一般化された場合。
この場合は本当に頻出。 twitter.com/genkuroki/stat...
タグ: 統計
posted at 01:22:40
@genkuroki ありがとうございます!
実はとりいそぎ、TensorToolbox.jlを使っているのですが、こちらに、
HOSVD, モード積, モード展開, 行列化などがあります。
TensorOperation.jlも見てみます
タグ:
posted at 01:13:37
@physics303 #Julia言語 もしかしたら、
github.com/Jutho/TensorOp...
TensorOperations.jl
が欲しいものかもしれません。 twitter.com/genkuroki/stat...
タグ: Julia言語
posted at 00:46:46
#Julia言語 PythonのmatplotlibのコードをJuliaに変換した例 twitter.com/genkuroki/stat...
タグ: Julia言語
posted at 00:30:47
#Julia言語 PythonのmatplotlibのコードをJuliaに変換した例 twitter.com/genkuroki/stat...
タグ: Julia言語
posted at 00:30:40
#Julia言語 PythonのmatplotlibのコードをJuliaに変換した例 twitter.com/genkuroki/stat...
タグ: Julia言語
posted at 00:30:38
#Julia言語
PyPlot.jlを入れればmatplotlibをJuliaで使えます。これ、かなり便利です。
RCall.jlを入れれば、Rのプロット函数も使える。
このツイートに続けて関連情報にリンク。 twitter.com/ultimatile/sta...
タグ: Julia言語
posted at 00:30:36
Pythonのnumpyのdotって、二つのテンソルの同じサイズの部分を縮約してくれるのか。これ、テンソルの足の数が不明なときはtensordotより便利?
タグ:
posted at 00:17:58
Julia 言語でテンソルの階数(深さ)を知るにはどうしたらい?
X = rand(4,2,2)だったら,4×2×2の階数3のテンソルを得るわけだけど,この3が欲しい時に,ぼくは,
size( collect(size(X) ) )[1]
としている.(絶対もっと良い方法があると思うの) pic.twitter.com/lOfd3Qa0id
タグ:
posted at 00:09:50
別スレ
↓
統計学の哲学における「尤度主義」の「尤度」は統計学用語の数学的に定義された尤度と全然違うものに見えるという話
↓ twitter.com/genkuroki/stat...
タグ:
posted at 00:06:19
主分岐
↓
尤度原理(尤度原則)の説明の記号の使い方もひどくずさん
データと尤度関数の関係が不明
パラメータ集合が共通でなけれないけない点も無視
↓ twitter.com/genkuroki/stat...
タグ:
posted at 00:02:31