7931
- いいね数 45,477/48,405
- フォロー 253 フォロワー 1,023 ツイート 68,505
- 現在地 チーバくんのみぞおち付近
- Web http://wed7931.hatenablog.com/
- 自己紹介 大学院数学専攻→インフラ系システムエンジニア→ちょっとお休み→新しい職場で心機一転。いろんな #数学 を勉強中。専門はリー群の表現論。妻と息子2人で日ハム応援中 #lovefighters 。 #水曜どうでしょう と #ゴリパラ見聞録 が好き。北海道出身/千葉県在住/松坂世代。
2019年02月07日(木)

非公開
タグ:
posted at xx:xx:xx

ああなるほど。集合 X の冪集合 P(X) をブール環と思ってフィルターで局所化すると、そのフィルターの双対イデアルで割った剰余環と同型なものが出てくるね。それがどうしたってなもんだけど。環の積閉集合と集合代数のフィルターって、ちょっと似てるなあと思ったもんで。
タグ:
posted at 09:49:15

adhara_mathphys @adhara_mathphys
皆さんそうだと思いますが、0章は何度読んでも笑ってしまいます。この章で有限群の表現論を学べます。以降の章が本番ですが。
タグ:
posted at 12:21:24

Wittenのインタビュー"Geometric Langlands, Khovanov Homology, String Theory"というのを見つけたwww.ias.edu/ideas/2015/wit...
タグ:
posted at 13:07:11



開宴!
#ゴリパラ見聞録
#一献 pic.twitter.com/pFvDLUytxc
posted at 18:21:22

Seinerg-Witten方程式に取り掛かろうと思ったが、どうも式に見覚えがない。古い数理科学を読み返したら、伊藤克司さんの良い解説がありました。この方程式はTFTに出てくるもので、クリフォード積はモノポール、2次微分形式はゲージ場だったのですね。スッキリした。 pic.twitter.com/zGhbvsGtCZ
タグ:
posted at 20:58:08

前回の数学カフェで「ベクトル空間の位相はどうするの」という質問に基底を1つ固定してR^nとの同型作って位相を移せばどうせ基底によらずwell-definedだろうと言ったのですが,実は有限次元位相ベクトル空間ではそれがハウスドルフになる唯一の位相らしい(Tychonoff)www.math.uni-konstanz.de/~infusino/Lect...
タグ:
posted at 21:59:10

そういえば、現在の僕の指導教官である新井朝雄先生の最終講義が2/12にあります。教科書の意味でも、指導の意味でも大変お世話になった先生です。興味がある方は多分居ても問題ないと思います(公式には確認取ってないです)。 pic.twitter.com/zVbpFw4yDf
タグ:
posted at 22:36:07