黒木玄 Gen Kuroki
- いいね数 389,756/311,170
- フォロー 995 フォロワー 14,556 ツイート 293,980
- 現在地 (^-^)/
- Web https://genkuroki.github.io/documents/
- 自己紹介 私については https://twilog.org/genkuroki と https://genkuroki.github.io と https://github.com/genkuroki と https://github.com/genkuroki/public を見て下さい。
2023年05月19日(金)
#数楽
問題:次が成立しているか?
aⁿ(b-c)+bⁿ(c-a)+cⁿ(a-b)
=(a-b)(a-c)(b-c)(Σ_{i,j,k≥0, i+j+k=n-2} aⁱ bʲ cᵏ)
if n≥2
例えばn=5のとき
a⁵(b-c)+b⁵(c-a)+c⁵(a-b)
=(a-b)(a-c)(b-c)(a³+a²b+a²c+ab²+abc+ac²+b³+b²c+bc²+c³)
これは正しい。 twitter.com/tooooottttteee...
タグ: 数楽
posted at 22:51:03
「うしおととら」
大昔に描いたようですが、とんとそんな気がしない。
どのシーンも、つい先週描き終わった気がして、コイツらはいつも近くにいるような気がしています。
ケータイがない世界であるという以外は今でもお読みになって差し支えないのではないでしょうか。(笑) pic.twitter.com/SiCzOfruGm
タグ:
posted at 20:51:57
白石 淳, 救急医 / Shiraish @shiraishia_md
@EARL_med_tw @AdultSpotDiffer リンクを辿っていくと、First author の論文業績に行きつきました。突如として反マスク論文ばかり書いてますな。
loop.frontiersin.org/people/1639957...
タグ:
posted at 20:06:47
「学校のネットワーク環境が脆弱」(36.7%, 複数回答中)
十分な性能の基地局と回線、そしてeduroamを入れて、使いやすく安全なネット環境にしましょうよ。ネットはもうオマケではなくインフラなんですよ。これからの世代は子供からネット利用が必須ですよ。 twitter.com/Toyokeizai_Edu...
タグ:
posted at 19:19:10
なお、このシステマティックレビューの不正がどのくらいひどいかは以下で連ツイで解説されています。
「この研究は科学的価値はない。エビデンスとして使用することは考えられない。これは、システマティックレビューやメタ解析でしてはいけないことを教える良い例になる」とのこと twitter.com/gidmk/status/1...
タグ:
posted at 18:59:24
マスク着用は有害とするシステマティックレビューに多数の不正が指摘され論文撤回
www.frontiersin.org/articles/10.33...
レビューの不適切な方法論、データ抽出とメタ分析が間違いだらけで意図的しか思えない操作をしていたことがpubpeerで指摘されていました。
タグ:
posted at 18:55:18
なんともお気の毒な。
個人的に、「有名私学で中高生を指導した~」とか「自分で担当した卒業生の実績を誇る~」みたいなセンセは地雷率が高い気がする twitter.com/olivetokkun/st...
タグ:
posted at 18:33:09
TVアニメ「ぼっち・ざ・ろっく!」公式 @BTR_anime
はたしてシークレットは出るのか…!?
#青山吉能の開封BINGO チャレンジ📺
後藤ひとり役の声優・青山吉能が
#ビルディバイドブライト ブースターパック
『#ぼっち・ざ・ろっく!』開封動画に初挑戦!
ただ開封するだけじゃない!
ブースターパックのプレゼント企画も🎁
🔽URL
youtu.be/vOkTTXlWtc0 pic.twitter.com/WZ6oCmhspn
posted at 17:55:00
A coffee table with printed cast-in hexagon panels that can be individually illuminated
[read more: buff.ly/42OhZxr]
[video: buff.ly/3pPAao1]
pic.twitter.com/W9QHRYUjdC
タグ:
posted at 17:32:06
Vol.4の「あのバンド」に続き、今回も「忘れてやらない」「星座になれたら」ライナーノーツ書かせて頂きました。
書かせて頂くにあたり、もう一度最終話を見返したら、、案の定泣いてしまい上手く書けなかったので、冷静になってから制作時を思い出して書きました。熱いです。
皆様ぜひ🎸🎸感謝。 twitter.com/BTR_anime/stat...
タグ:
posted at 16:08:11
@nabekichi32 学校で教えていないだけで、気温や点数などでマイナスの概念自体は持っている子も少なくありません。
電池などのプラスとマイナスもありますしね。
増減をプラスマイナスで表現することも、小4くらいならちゃんと説明すれば分かる子どものほうが多いと言う印象があります。
タグ:
posted at 15:16:48
問題文には「5割」って書いてあるとしても、俺はソレを授業で「0.5」とか「半分」とか「1/2」って読む。
で、コレ「教育的にワザと」そうしてるワケじゃなくて、俺がずっと「そう認識してる(そう見えてる」ってだけで、こういうのを積み重ねて「違ったものが同じに見える」のを身に付けて欲しいよね。
タグ:
posted at 13:37:44
使うというより「あえて使ってる」方が正しいか。
こないだもクラス替えして人数変わったんだけど、2人落ちて1人上がってきたから「マイナス2のプラス1だから合わせてマイナス1だね」って言ったんだけど、普通に通じてたし、「そういう会話」も含めて「育てる」ってコトだと思ってる
タグ:
posted at 13:34:19
「算数(小学生)には負の概念が無い」っていう人多い(昨日も質問対応してる算数講師が口にしてた)んだけど、個人的には「概念が無い」でも「扱ってはいけない」でもなく「扱わないコトにしてるだけ」だと思うんだよね。
だってマイナスの話、普通に4年生くらいでも通じるし、実際に日常会話で使うから
タグ:
posted at 13:31:51
あともう一点。
網のかけ具合を警察、検察といった捜査機関への信頼に委ねることは絶対に間違ってます。
捜査機関がどれだけ網を広げようとしてもこれ以上広げられないことに刑罰法規の存在価値はあります。
タグ:
posted at 12:40:05
犯罪にするかどうかの線引きは、処罰すべきケースだけではなく、本当に例外がないのかを見なければいけないと思います。
しかも5年以上の懲役です。今の案ですら、15歳の高校生と20歳の大学生が真に同意していたとしても懲役5年以上です。… twitter.com/i/web/status/1... twitter.com/shellysproject...
タグ:
posted at 11:37:24
Shozaburo Nakamura @shownakamura
最近出た本。実践Julia入門、Lisp本, 動かして学ぶ!Rust入門, Interface(インターフェース)2023年5月号はRust特集、Go言語プログラミングエッセンス
iiyu.asablo.jp/blog/2023/05/1...
タグ:
posted at 10:52:16
Julia can do everything… except install itself.
For that, there’s Rust! pic.twitter.com/43iy0yQZ6U
タグ:
posted at 04:45:42
常備薬であっても事前申請していないと怒られるとか、日焼け止めはNGとか、子供の健康にとって有害なルールが残っていること自体がまずい。
だから、学校側の謝罪は「子供にとって有害なルールを使って、子供を害してしまったことを謝罪致します」の形式である必要があると思いました。 twitter.com/SILENCE_SZK8/s...
タグ:
posted at 04:11:36
#数楽 n→大で成立している
n! = nⁿ e⁻ⁿ √(2πn) (1 + 1/(12n) + O(1/n²))
という近似は n = 1 でも悪くないことが、
13√(2π)/(12e) = 0.99898⋯
となることからわかります。→添付画像①
n=10の場合は添付画像② pic.twitter.com/wPrXMfHTd0
タグ: 数楽
posted at 03:29:29
本を書いた側がよろしくない説明をしたと自覚していたら、読者がピンポイントでそのまずい説明を引用して褒め称えているシーンを見たとき「うぎゃー!」となると思う。
引用するときに「~の部分は~と訂正して読む必要がある」のようにさりげなく訂正を入れてくれていれば安心する。 twitter.com/genkuroki/stat...
タグ:
posted at 02:47:37
@sekibunnteisuu #数楽 (1+x)ⁿの二項展開に (-x d/dx)ⁿ を作用させてから x=-1 とおくと、1+xについて1次以上の項が消えて、件の公式が得られるのですが、その公式にはどこで出会ったのですか?
何か組み合わせ論的な数え上げから出て来た?
タグ: 数楽
posted at 02:38:27